2	dinoflagellate, Dinophysis acuminata
3	
4	Authors:
5	Amanda K. Williams ^a , Sylvain Le Marchand ^b , Edward Whereat ^a , D. Tye Pettay ^{a,c} , and
6	Kathryn J. Coyne ^{a,1}
7	
8	^a University of Delaware, 1044 College Dr., Lewes DE 19958
9	^b University of Delaware, Delaware Biotechnology Institute, BioImaging Center, 590
10	Avenue 1743, Newark, DE 19713
11	^c Permanent address: University of South Carolina Beaufort, Department of Natural
12	Sciences, 801 Carteret St, Beaufort, SC, 29902
13	
14	¹ Corresponding author:
15	Kathryn J. Coyne, email: kcoyne@udel.edu
16	
17	Key Words:
18	Dinophysis acuminata
19	Heterosigma akashiwo
20	Mesodinium rubrum
21	kleptoplasty

Heterosigma akashiwo does not serve as prey and chloroplast donor for the toxic

22 Delaware Inland Bays

24 Abbreviations:

25 DIBs = Delaware Inland Bays, OA = okadaic acid, DSP = diarrhetic shellfish

- 26 poisoning
- 27

28 Acknowledgements:

- 29 We would like to acknowledge Dr. Mark Warner (University of Delaware) for help in
- 30 designing and discussing project details and Dr. Matthew Johnson (Woods Hole
- 31 Oceanographic Institution) and Dr. Juliette Smith (Virginia Institute of Marine
- 32 Science) for sharing cultures for the project. In addition, we would like to thank the
- 33 volunteers of the University of Delaware Citizen Monitoring Program for sharing
- 34 historical data. Also, thank you to Amanda Pappas, Yanfei Wang, and Emmie Healey
- 35 (University of Delaware) for help in culturing.
- 36

37 Funding

38 This work was supported by the Delaware Sea Grant R/HCE-32 to DTP and KJC and

- 39 the Carolyn Thompson Thoroughgood Graduate Student Research Award to AKW,
- 40 DTP, and KJC. The University of Delaware Citizen Monitoring Program is supported
- 41 by the Delaware Department of Natural Resources and Environmental Control and
- 42 Delaware Sea Grant on an annual basis.

43

45 Abstract

46	In laboratory culture, the toxic dinoflagellate Dinophysis acuminata acquires
47	plastids from the ciliate, Mesodinium rubrum, which, in turn, acquires plastids from
48	the cryptophyte, Teleaulax amphioxeia. Reports of D. acuminata from field samples
49	found plastids of the raphidophyte, Heterosigma akashiwo within D. acuminata cells,
50	suggesting a broader range of prey. Dinophysis blooms often co-occur with H.
51	akashiwo in Delaware's inland bays. In the study presented here, predation on H.
52	akashiwo by D. acuminata was investigated. Growth rates of D. acuminata were
53	measured when cultured with <i>H. akashiwo</i> either alone or with its known prey, <i>M</i> .
54	rubrum. M. rubrum was also cultured with H. akashiwo to examine predation by the
55	ciliate as a vector for Heterosigma plastids. Ingestion rates were measured in
56	individual cells of <i>D. acuminata</i> when presented with <i>H. akashiwo</i> as prey. Retention
57	of plastids from <i>H. akashiwo</i> was investigated by measuring chlorophyll <i>a</i>
58	fluorescence intensities in cells presented with <i>H. akashiwo</i> as prey compared to <i>M</i> .
59	rubrum. Additionally, a fluorescence-based method was developed to identify the
60	presence of the accessory pigment fucoxanthin from <i>H. akashiwo</i> plastids in cells of
61	D. acuminata. Results showed that the growth rate of D. acuminata was significantly
62	lower when offered <i>H. akashiwo</i> as prey compared the growth rate when offered <i>M</i> .
63	rubrum as prey. Likewise, no predation was observed when D. acuminata was offered
64	H. akashiwo as prey. Intensity of chlorophyll a fluorescence was lower when H.
65	akashiwo was offered as prey compared to M. rubrum, and fucoxanthin was not
66	detected in any of the Dinophysis cells after incubation with H. akashiwo. Results of

- 67 this investigation do not support the hypothesis that *D. acuminata* preys on *H.*
- *akashiwo* and highlight the need for further research on factors that stimulate the
- 69 growth of *Dinophysis* in field populations.

1. Introduction:

73	Dinophysis acuminata is a predatory dinoflagellate that produces okadaic acid
74	(OA) and dinophysistoxins (DTX), toxins associated with diarrhetic shellfish
75	poisoning (DSP) (Yasumoto et al., 1985). In laboratory culture, D. acuminata is
76	known to prey on the ciliate, Mesodinium rubrum, harboring plastids that originated
77	from one of several cryptophytes, such as Teleaulax amphioxeia, which are then
78	retained by D. acuminata in the process of kleptoplasty (Park et al., 2006; Takishita et
79	al., 2002). Since D. acuminata does not produce chloroplasts of its own, kleptoplasty
80	allows D. acuminata to collect energy through photosynthesis in addition to the energy
81	collected from consumed prey, giving it a unique competitive advantage. Due to its
82	obligate kleptoplastic nature, recently established protocols for culturing D. acuminata
83	strictly use <i>M. rubrum</i> as prey (Park et al., 2006; Burkholder et al., 2008).
84	Dinophysis acuminata has been shown to divide prolifically in the presence of
85	M. rubrum, suggesting that blooms of this species are driven in part by the presence of
86	prey (Burkholder et al., 2008; Hattenrath-Lehmann et al., 2013). However, wild D.
87	acuminata cells have been found to contain plastids of multiple algal origin, including
88	those originating not only from Teleaulax amphioxeia, but also Teleaulax acuta,
89	Rhodomonas sp., Chroomonas sp., Pyramimonas sp., and the raphidophyte
90	Heterosigma akashiwo (Díaz et al., 2020; Kim et al., 2012).
91	Dinophysis acuminata blooms occur in Delaware and the surrounding mid-
92	Atlantic region and have been confirmed via morphological analysis and rDNA
93	sequence analysis (Wolny et al., 2020). Heterosigma akashiwo is also of interest in

94 Delaware where blooms of *H. akashiwo* have co-occurred with blooms of *D.*

95	acuminata in Torquay Canal, a tributary of Rehoboth Bay, Delaware (University of
96	Delaware Citizen Monitoring Program, n.d.). Cell densities of both H. akashiwo and
97	D. acuminata have been recorded in the millions of cells per liter, with Dinophysis
98	toxin levels from extracted shellfish tissue exceeding the US FDA recommended
99	exposure levels (Wolny et al., 2020). With shellfish aquaculture also in Rehoboth Bay,
100	DE, an understanding of factors that contribute to bloom dynamics of <i>D. acuminata</i> in
101	Torquay Canal is important to preserve human health.
102	Plastids originating from H. akashiwo found in wild D. acuminata cells (Kim
103	et al., 2012) raises the question of whether H. akashiwo plays a role in initiating or
104	sustaining D. acuminata blooms. The main objective of this study was to determine if
105	H. akashiwo is a source of prey for D. acuminata. Laboratory culture experiments
106	measured ingestion and growth rates of D. acuminata when offered H. akashiwo as
107	prey. Since D. acuminata is known to retain functioning chloroplasts from its prey
108	(Díaz et al., 2020; Kim et al., 2012; Park et al., 2006), individual D. acuminata cells
109	that were cultured with H. akashiwo were also examined to measure chlorophyll
110	content. The source of plastids in individual D. acuminata cells was investigated using
111	a novel dual ratiometric approach via confocal microscopy. This technique measured
112	the relative contribution of the accessory pigments fucoxanthin (Ex: 488 nm) and
113	phycoerythrin (Ex: 561 nm) to chlorophyll fluorescence. Since fucoxanthin is present
114	in <i>H. akashiwo</i> but not <i>M. rubrum</i> , and phycoerythrin is present in <i>M. rubrum</i> but not
115	H. akashiwo, the ratio of chlorophyll fluorescence intensity when excited at 488 vs.

116 561 nm in *D. acuminata* would provide evidence for the presence of plastids

- 117 originating from *H. akashiwo* in *D. acuminata* cells (Yutaka et al., 2001; Guiry, 2003).
- 118 Finally, historical data was examined to identify factors that may have contributed to
- 119 co-occurring blooms of *H. akashiwo* and *D. acuminata* in Torquay Canal.

120 **2. Methods:**

121 **2.1 Algal and ciliate cultures**

- 122 Cultures of *D. acuminata* (strain DADE) originally isolated from Torquay Canal,
- 123 Rehoboth Beach, DE (Lat. = 38.699031, Long. = -75.112409) were shared by Dr.
- 124 Juliette Smith (Virginia Institute of Marine Science, Gloucester Point, VA). Cultures
- 125 of *M. rubrum* (strain CBJR05, clade G) and *T. amphioxeia* (strain GCEP01) were
- 126 shared by Dr. Matthew Johnson (Woods Hole Oceanographic Institution, Woods Hole,
- 127 MA). H. akashiwo (strain CCMP 2393, National Center for Marine Algae and
- 128 Microbiata, Bigelow, ME) was originally isolated from Torquay Canal. All species
- 129 were cultured in 20 PSU f/6 media at 18 °C with a 12:12 light: dark regime (Goa et al.,
- 130 2019). Cultures of *D. acuminata* were maintained with *M. rubrum* at a predator: prey
- 131 ratio of 1:4 and cultures of *M. rubrum* were fed *T. amphioxeia* at a predator: prey ratio
- 132 of 1:4, both on a weekly basis. As needed, cultures of *D. acuminata* were filtered onto
- a 10 µm mesh sieve to prevent overgrowth of the cryptophyte, *T. amphioxeia*.
- **2.2 Growth Rate**
- 135 *Dinophysis acuminata* were maintained for two weeks without prey prior to the
- 136 start of the experiment. Cells were concentrated onto a 10 µm mesh sieve and
- 137 enumerated using a Sedgewick rafter chamber (Goa et al., 2019). D. acuminata was

transferred into 150 mL plastic Nalgene flasks at a cell density of 3,500 cells mL⁻¹ and
provided with the following prey at a predator: prey ratio of 1:4 (N=3): only *H*.
akashiwo, both *H. akashiwo* and *M. rubrum*, and only *M. rubrum*. On days 1, 3, 6, 8,
and 10, samples were fixed with Lugol's for counting using light microscopy (Guillard
and Sieracki, 2005). The cell density of *D. acuminata* was determined using a
Sedgewick rafter chamber, and cell densities of *M. rubrum* and *H. akashiwo* were
measured using a hemocytometer counting at least 100 cells. The following
calculation was used to determine growth rate (
$$\mu$$
) of algae:

147
$$\mu = \frac{\ln(cell \ abundance \ T_{final}/cell \ abundance \ T_{initial} \)}{days}$$

148 **2.3 Predation**

Predation by *M. rubrum* (1,444 cells mL⁻¹) on prey species *H. akashiwo* or *T.* 149 150 amphioxeia (control) was investigated using a predator: prey ratio of 1: 20 in separate 151 wells of a 12-well plate (n=6). At 24 hours (t=24), prey cell density in treatments and 152 controls was enumerated using a hemocytometer, counting at least 100 cells. The experiment was then repeated with *D. acuminata* at 2,743 cells mL⁻¹ (n=6) as predator 153 154 and H. akashiwo or M. rubrum (control species) as prey using a predator: prey ratio of 155 1:20. Prey controls were included in both predation experiments with only prey 156 species (predators omitted) at the same concentration as in the predator: prey 157 treatments (n=6). Grazing constant, clearance rate, and ingestion rate were calculated 158 as in Frost (1972), Heinbokel (1978) and Jeong and Latz (1994).

159 **2.4 Microscopic analysis of chlorophyll emission**

160	During the growth rate experiment, a 2 mL aliquot from each flask was
161	removed at 48 hours. Samples were then filtered onto 25 mm 0.2 μm black
162	polycarbonate filters and mounted on a microscope slide. Each filter received one drop
163	of Citifluor AF1 mountant media (Ted Pella, Inc., Redding, CA) and was covered with
164	a coverslip (Martin-Cereceda et al., 2008; Martinez et al., 2014).
165	Cells were imaged on a Zeiss LSM 710 inverted confocal microscope fitted
166	with a 40x C-Apochromat water immersion objective (NA = 1.2) (Carl Zeiss Inc.,
167	Thornwood, NY). The 633 nm laser line was used to excite chlorophyll a in individual
168	cells (n=30 cells for each treatment). Since chlorophyll a and fucoxanthin have similar
169	absorbance spectra, the 633 nm laser line was used to avoid excitation of fucoxanthin,
170	allowing the emission from only chlorophyll a to be observed. Fluorescence emission
171	from chlorophyll a was collected between 649 and 698 nm. Z-stack images with a step
172	of 0.3 μ m were acquired from bottom to top of the cells. Mean intensity values of
173	chlorophyll a emission were determined using ImageJ/Fiji (NIH, Bethesda, MD)
174	software. Briefly, maximum intensity projections of the z-stacks were segmented to
175	measure intensities from single cells.
176	2.5 Contribution of accessory pigments to chlorophyll emission
177	Cultures of H. akashiwo, T. amphioxeia, and D. acuminata were used initially

- to investigate cell-specific chlorophyll fluorescence emission when excited at 488 nm,
 the excitation wavelength of fucoxanthin. Cells were filtered onto 25 mm 0.2 μm
- 180 black polycarbonate filters and mounted on a microscope slide. Each filter received

181	one drop of Citifluor AF1 mountant media (Ted Pella, Inc., Redding, CA) and was
182	covered with a coverslip (Martin-Cereceda et al., 2008; Martinez et al., 2014). The
183	488 nm laser line was used to excite fucoxanthin in individual cells (Papagiannakis et
184	al., 2005). Fluorescence emission of chlorophyll when excited at these wavelengths
185	was collected between 649-698 nm and emission intensity determined using
186	ImageJ/Fiji (NIH, Bethesda, MD) software. To account for differences in plastid
187	number, the chlorophyll emission intensity when excited at 488 nm was normalized to
188	chlorophyll emission intensity when excited at 633 nm, the excitation wavelength of
189	chlorophyll <i>a</i> .
190	Using the protocol described above for growth rate experiments, a separate
191	experiment was conducted using Dinophysis acuminata provided with H. akashiwo, a
192	mix of H. akashiwo and M. rubrum, or only M. rubrum as prey. Samples were
193	collected at 48 hours, mounted onto microscope slides, and the 488 nm and 633 nm
194	laser lines were used to excite fucoxanthin and chlorophyll as above. A second
195	measurement of chlorophyll fluorescence was made when excited at 561 nm, the
196	excitation wavelength of phycoerythrin. Chlorophyll fluorescence emission when
197	excited at each wavelength was collected between 649-698 nm. To determine the
198	relationship between fucoxanthin-containing plastids to phycoerythrin-containing
199	plastids, the ratio of chlorophyll fluorescence when excited at 488 nm to the
200	chlorophyll emission intensity when excited at 561 nm was calculated.

201 **2.6 Relationships between** *D. acuminata* and *H. akashiwo* abundances in field

202 samples

203	Between 2011 and 2017, monthly water samples were collected between April
204	and October at Torquay Canal, Rehoboth, DE (38.699015, -75.112394) by the
205	University of Delaware Citizen Monitoring program. Salinity and temperature data
206	were collected using a YSI handheld multi-meter (Xylem Analytics, Yellow Springs,
207	Ohio). Cell densities were determined by microscopic screenings of live samples (two
208	or three 40 μ L drops), followed by screenings of preserved (Lugol's) samples (1-2
209	mL) if cell densities of <i>D. acuminata</i> were less than 10 ⁵ cells L ⁻¹ . Samples in which
210	both <i>H. akashiwo</i> and <i>D. acuminata</i> exceeded 10^4 cells L ⁻¹ (n = 16) were selected for
211	data analysis.

212 2.7 Statistical Analysis

213 Statistical analysis was performed using a one-way ANOVA test in excel on 214 individual data collected during the following experiments: growth curve, ingestion 215 rate, chlorophyll *a* intensity, and the ratio of intensity of emission of both fucoxanthin: 216 chlorophyll *a* and fucoxanthin: phycoerythrin. If data were found to be significantly 217 different ($p \le 0.05$), then a Tukey honestly significant difference (HSD) post hoc test 218 was conducted. Pearson's correlation coefficient was determined between D. 219 acuminata and H. akashiwo cell density in Torquay Canal between 2011 and 2017. 220 The relationship between salinity, temperature and H. akashiwo cell density and co-221 occurring blooms of D. acuminata between 2011 and 2017 were analyzed using a 222 Pearson's correlation (Data shared by UDCMP).

3. Results

3.1 Growth Rates

225	Changes in cell abundance for D. acuminata over 10 days incubation when
226	offered M. rubrum, H. akashiwo, or a mix of M. rubrum and H. akashiwo are shown in
227	Fig. 1A. Changes in cell abundance for prey are shown in Fig. 1B. The mean growth
228	rate of <i>D. acuminata</i> when offered only <i>H. akashiwo</i> as prey was -0.037 (+/- 0.028) d^{-1}
229	and was not significantly different from the growth rate of <i>D. acuminata</i> without prey
230	$(-0.12 + -0.14 d^{-1})$, or when offered <i>M. rubrum</i> and <i>H. akashiwo</i> together [-0.0076]
231	(+/- 0.015) d ⁻¹]. In control cultures with only <i>M. rubrum</i> as prey, the growth rate of <i>D</i> .
232	acuminata was 0.050 (+/- 0.0032) d ⁻¹ and significantly higher ($p < 0.005$) than the
233	growth rate without prey or when in the presence of both H. akashiwo and M. rubrum
234	or <i>H. akashiwo</i> alone. During this experiment, the growth rate of <i>H. akashiwo</i> in
235	treatments with D. acuminata was 0.28 (+/- 0.0035) d ⁻¹ and was not significantly
236	different from the growth rate of <i>H. akashiwo</i> when in the presence of both <i>M. rubrum</i>
237	and <i>D. acuminata</i> [0.30 (+/- 0.012) d ⁻¹]. <i>M. rubrum</i> cells were not detected after 3
238	days in flasks containing only D. acuminata or those containing H. akashiwo and D.
239	acuminata (Fig. 1).
240	2.2 In continue Deter

- **3.2 Ingestion Rates**
- 241 In 24-hour predation experiments, ingestion of *H. akashiwo* by either *M*.
- *rubrum* or *D. acuminata* was not observed. Control experiments in which *T*.
- *amphioxeia* was provided as prey for *M. rubrum*, or *M. rubrum* as prey for *D.*
- *acuminata* exhibited positive ingestion rates (12.3 +/- 1.98 cells d⁻¹ and 14.7 +/- 3.38

245 cells d⁻¹, respectively). Cell density of *M. rubrum* decreased when given *H. akashiwo*

- as prey but not when given *T. amphioxeia* as prey, suggesting potential allelopathic
- 247 interactions. Control cultures with prey alone demonstrated positive growth for both
- 248 *M. rubrum* (μ =0.0623 +/-0.0068 h⁻¹) and *H. akashiwo* (μ =0.0474 +/-0.0088 h⁻¹).

249 **3.3 Analysis of chlorophyll emission**

250 It was hypothesized that if *D. acuminata* was retaining plastids from prey, cell-

251 specific chlorophyll *a* intensity would increase. Chlorophyll *a* emission intensity was

- significantly lower (p > 0.0001) in *D. acuminata* that were presented with only *H*.
- 253 *akashiwo* as prey (140.3 ± 15.5) or a combination of *H. akashiwo* and *M. rubrum* as

prey (192.8 \pm 15.9) compared to cells of *D. acuminata* that were presented with only

255 *M. rubrum* as prey (361.0 ± 16.2) (Fig. 2).

256 **3.4 A ratiometric approach to evaluate plastid source**

257 The ratiometric approach was used to further determine if *D. acuminata* preys 258 on *H. akashiwo* by searching for fucoxanthin in *D. acuminata* cells that were given *H.* 259 akashiwo as prey. It was hypothesized that if D. acuminata preys on H. akashiwo, the 260 pigment fucoxanthin, which is present in *H. akashiwo* plastids but not *M. rubrum* 261 would be detected after feeding (Yutaka et al., 2001; Rial et al., 2012). Fucoxanthin 262 was detected by obtaining a ratio of the relative contribution of fucoxanthin and 263 phycoerythrin to chlorophyll fluorescence. This hypothesis was tested using 264 monocultures of *H. akashiwo*, *T. amphioxeia* and *D. acuminata* previously fed with *M.*

rubrum. The chlorophyll *a* emission intensity when excited at 488 nm (for

266 fucoxanthin), normalized to emission intensity when excited at 633 nm (for

14

267 chlorophyll *a*), was significantly higher in *H. akashiwo* cells $(1.31 \pm 0.12; p < 0.00001)$ 268 than in *T. amphioxeia* (1.21 ± 0.01) or in *D. acuminata* that were offered *M. rubrum* as 269 prey (0.98 ± 0.28) (Suppl. Fig. S1). This data confirms the hypothesis that a higher 270 ratio of fucoxanthin to phycoerythrin is seen in the fucoxanthin containing plastids of 271 *H. akashiwo*. 272 In order to determine if *D. acuminata* retains plastids from *H. akashiwo* when

offered as prey, the same ratiometric test was conducted. There was no statistically significant difference (p = 0.752) between the ratio of chlorophyll *a* emission intensity when excited at 488 nm (for fucoxanthin) to 561 nm (for phycoerythrin) in cells of *D*. *acuminata* that were presented with only *H. akashiwo*, *H. akashiwo* and *M. rubrum*, or only *M. rubrum* as prey (Fig. 3). The lack of a significant difference between ratios of the two treatment groups suggests that *D. acuminata* is not retaining plastids from *H. akashiwo* when offered as prey.

3.5 Relationships between *D. acuminata* and *H. akashiwo* abundances in field samples

282 Pearson's correlation between *D. acuminata* and *H. akashiwo* cell abundances

- in Torquay Canal between 2011 and 2017 revealed a highly significant correlation
- 284 when both species were present at >10⁴ cells L⁻¹ (r = 0.604, p = 0.00065) (Fig. 4).
- 285 Salinity ranged from 18.5 to 27.6 and temperature ranged from 17.7 °C to 25.9 °C.
- 286 Cell densities for *D. acuminata* and *H. akashiwo* were significantly correlated to both

salinity (p = 0.0070 and 0.0079, respectively) and temperature (p = 0.0070 and 0.0079, respectively).

289 **4. Discussion**

290 Trophic interactions between species has been shown to be an important 291 determinant in blooms of *D. acuminata*. Previous studies showed that blooms occur 292 when *D. acuminata* practices kleptoplasty over autotrophy (Burkholder et al., 2008; 293 Hattenrath-Lehmann et al., 2013). However, laboratory cultures of D. acuminata have 294 only been observed to feed on *M. rubrum* and retain plastids originating from its prey 295 *Teleaulax* sp. When offered *M. rubrum* as prey, *D. acuminata* has a growth rate that is 296 three times higher than when no prey is provided, due to the increased trophic 297 efficiency associated with mixotrophy over autotrophy (Park et al., 2006; Sanders, 298 1991).

There is evidence that wild populations of *D. acuminata* may consume other species in addition to *M. rubrum*. Examination of *D. acuminata* cells during a bloom along the coast of South Korea, for example, revealed the presence of plastids of multiple algal origins, including from *H. akashiwo* (Kim et al., 2012). The observation of both *D. acuminata* and *H. akashiwo* blooms in Torquay Canal, DE suggested the need for further research to understand interactions between these species in local environments.

Results of this study indicated that *D. acuminata* does not prey on *H. akashiwo* in controlled laboratory culture experiments, and that *M. rubrum* does not provide a conduit for plastids from *H. akashiwo* to *D. acuminata* as it does for *Teleaulax*. The

growth rate of <i>D. acuminata</i> when provided with <i>H. akashiwo</i> alone (-0.037 d ⁻¹) was
not significantly different from the growth rate of starved <i>D. acuminata</i> without prey.
Additionally, growth rates of <i>D</i> . <i>acuminata</i> when provided a combination of <i>M</i> .
<i>rubrum</i> and <i>H. akashiwo</i> (-0.0076 d ⁻¹) as prev was significantly lower ($p < 0.005$) than

313 when provided with *M. rubrum* as sole prey (0.050 d^{-1}) (Fig. 1). This suggests that

314 grazing and growth of *D. acuminata* may be inhibited by the presence of *H*.

309

310

311

312

315 *akashiwo*, at least in laboratory culture, even when its preferred prey (*M. rubrum*) is

316 present. Further evidence that *D. acuminata* selectively feeds on *M. rubrum* is the

317 disappearance of *M. rubrum* and increase in *H. akashiwo* cell abundance in predation

318 experiments. It should be noted here, however, that grazing studies to investigate the

319 potential for *H. akashiwo* to serve as prey for *M. rubrum* also resulted in a decline of

320 *M. rubrum* cells. The interactions between *H. akashiwo* and *M. rubrum* require

321 further study, but research has demonstrated allelopathic interactions between *H*.

322 *akashiwo* and other ciliates (cf. Frederickson et al. 2011). Elevated pH of the mixed

323 prey culture may have also had a negative impact on cell densities of *M. rubrum*

324 (Smith & Hansen 2007; Nielsen et al 2012). Although *M. rubrum* was routinely

325 grown to high density in cell culture with *T. amphioxia* provided as prey, previous

326 studies have shown negative impacts of elevated pH (>8.8) on growth of this ciliate

327 (Smith and Hansen 2007). The low tolerance to elevated pH may have contributed to

328 the decline in cell densities of *M. rubrum* when provided to *D. acuminata* either alone

329 or in mixed prey experiments with *H. akashiwo* (Fig. 1).

330	In addition to growth experiments, 24-hour grazing experiments were
331	conducted with <i>H. akashiwo</i> to evaluate the potential for this species to serve as prey
332	for D. acuminata. Several factors can affect ingestion rates. Riisgaard and Hansen
333	(2009), for example, showed a correlation between D. acuminata ingestion rates and
334	M. rubrum prey abundance, resulting in rates that varied from 1 to 11 M. rubrum
335	(prey) per <i>D. acuminata</i> d ⁻¹ . Kim et al. (2008) observed highest ingestion rates of <i>M</i> .
336	<i>rubrum</i> by <i>D. acuminata</i> (3.2 <i>M. rubrum</i> d^{-1}) when grown at higher light intensities.
337	Temperature has also been shown to affect the activity and feeding rate of plankton
338	(Hansen et al., 1997; Kamiyama et al., 2009). For example, reported average ingestion
339	rates of <i>M. rubrum</i> by <i>D. acuminata</i> increased from 1.18 d ⁻¹ at 4 °C to 2.06 d ⁻¹ at 10
340	°C (Tong et al., 2010). Results of this study yielded an ingestion rate of control
341	species <i>M. rubrum</i> at 14.7 cells d^{-1} . Despite the high grazing activity of <i>D. acuminata</i> ,
342	there was no measurable predation on <i>H. akashiwo</i> in laboratory culture experiments,
343	which were conducted in parallel with control experiments where M. rubrum served as
344	prey. It is important to note here that D. acuminata, along with other members of this
345	genus have been observed to form mucus traps which could impact ingestion rates
346	(Ojamae et al., 2016; Mafra et al., 2016; Papiol et al 2016); however, mucus traps
347	were not observed for this strain of <i>D. acuminata</i> .
348	The presence of plastids from H. akashiwo in D. acuminata cells described by
349	Kim et al. (2012) may have occurred through "sloppy" predation, resulting in rare

350 and/or accidental ingestion that could be missed by measuring ingestion rates in bulk

351	culture experiments. Further evaluation of predation by D. acuminata then considered
352	the function of kleptochloroplasts on a cell-by-cell basis when offered either M.
353	rubrum or H. akashiwo as prey. An increase in the photosynthetic rate and chlorophyll
354	a concentration has been previously documented in D. acuminata when fed M. rubrum
355	(Nielsen et al., 2012; Hansen et al., 2016). Consistent with grazing and growth
356	experiments, chlorophyll <i>a</i> intensity was significantly lower ($p < 0.0001$) in <i>D</i> .
357	acuminata cells when provided with H. akashiwo or combined H. akashiwo and M.
358	rubrum as prey, than in cells offered only M. rubrum as prey (Fig. 2).
359	Despite the lower chlorophyll <i>a</i> intensity, it was still possible that plastids from
360	H. akashiwo may have been retained. In order to evaluate this hypothesis, a
361	ratiometric approach to evaluate energy transfer from accessory pigments present in
362	plastids retained by individual cells was developed. Here, cell-specific chlorophyll a
363	emission was measured using fluorescence confocal microscopy after excitation at 488
364	nm to measure energy transfer from fucoxanthin, the accessory pigment in <i>H</i> .
365	akashiwo plastids, and at 561 nm to measure energy transfer from phycoerythrin, the
366	accessory pigment in Teleaulax plastids. In validating this method, the normalized
367	chlorophyll emission after excitation at 488 nm was significantly higher in cultures of
368	H. akashiwo than cultures of T. amphioxeia or D. acuminata (Suppl. Fig. S1). D.
369	acuminata was then offered H. akashiwo alone, both H. akashiwo and M. rubrum, or
370	M. rubrum alone as prey, and chlorophyll emission in D. acuminata cells was
371	measured after excitation at 488 nm and compared to chlorophyll emission when
372	excited at 561 nm (for phycoerythrin). There was no significant difference ($p = 0.21$)

373 in the ratio of chlorophyll emission intensities in any of the treatment groups (Fig. 3), 374 suggesting that fucoxanthin-containing plastids were not present in *D. acuminata*. 375 Overall, results of this analysis in which individual cells were evaluated for changes in 376 in vivo chlorophyll fluorescence and the presence of fucoxanthin-containing plastids, 377 do not support the hypothesis that sloppy feeding results in the ingestion of H. 378 akashiwo. 379 Blooms of *D. acuminata* co-occur with other phytoplankton species, including 380 the raphidophyte, *H. akashiwo* (Burkholder et al., 2008; Ma et al., 2006). 381 Retrospective analysis of cell abundance data between 2011-2018 for samples in which *D. acuminata* and *H. akashiwo* cell densities exceeded 10^4 cells L⁻¹ demonstrate 382 383 a highly significant correlation between D. acuminata and H. akashiwo cell densities 384 in Torquay Canal, Rehoboth, DE (Fig. 4), suggesting that these species respond to 385 similar biotic and/or abiotic factors. Bloom co-occurrence of D. acuminata and H. 386 akashiwo in Torquay Canal is likely driven by nutrient inputs and/or other predator-387 prey dynamics (Connell & Jacobs, 1997; Hattenrath-Lehman et al., 2013; Hattenrath-388 Lehman et al., 2015). In grazing experiments conducted here, the growth rate of H. 389 akashiwo actually increased when in the presence of D. acuminata, suggesting the 390 possibility that exudates such as dissolved organic matter from *D. acuminata* (Gao et 391 al., 2019) may have fueled growth of *H. akashiwo*. Seasonal fluxes in temperature 392 may also constrain bloom dynamics. Blooms examined here, for example, occurred 393 when water temperatures were between 17.7 °C and 25.9 °C, the optimal temperature

range for blooms of each species (Zhang et al., 2006; Handy et al., 2008; Hattenrath-Lehmann, 2013).

396	While results presented here also do not support predation of <i>H. akashiwo</i> by
397	either D. acuminata or M. rubrum, other ciliates may provide a conduit for transfer of
398	plastids from H. akashiwo to D. acuminata. Strombidinopsis acuminatum, Coxliella
399	sp., Metacylis sp., and Eutintinnus sp. have all been shown to prey on H. akashiwo,
400	and there is evidence that Strombidinopsis sp. retains chloroplasts from prey (Clough
401	and Strom, 2005; Frederickson et al., 2011). Furthermore, individual Dinophysis cells
402	from wild populations were shown to retain red cryptophyte plastids that were
403	phylogenetically associated with plastids retrieved from tintinnids and heliozoans
404	(Díaz et al., 2020), suggesting the possibility that <i>D. acuminata</i> may acquire plastids
405	from <i>H. akashiwo</i> retained through predation by other ciliates or protists.
406	3. Conclusions
407	Although D. acuminata cells isolated from field samples have been found to
408	contain plastids from H. akashiwo, direct predation on H. akashiwo by D. acuminata
409	or by an intermediate, M. rubrum, was not observed in the laboratory. Growth rates

410 and ingestion rates of *D. acuminata* when provided with *H. akashiwo* as prey were

411 both negative. Furthermore, chlorophyll *a* intensity when offered *H. akashiwo* as prey

412 was significantly lower than when offered only *M. rubrum* as prey, and there was no

413 evidence of fucoxanthin-containing plastids in *D. acuminata* after co-incubation with
414 *H. akashiwo*.

415	To better understand the ecology of <i>D. acuminata</i> and factors that contribute to
416	bloom initiation in the mid-Atlantic region of the US, further research into the
417	predator-prey dynamics in field populations will be necessary. Such analysis could
418	include studies where cell densities in feeding experiments are more representative of
419	natural conditions and could also investigate feeding behavior. While it is known that
420	D. acuminata uses a peduncle to feed, for example, the ability to produce mucus traps
421	may decrease prey selectivity. It is unclear what factors signal deployment of mucus
422	traps or how widespread this phenomenon is among D. acuminata strains.
423	Results here also suggest that abiotic factors likely provide an environment that
424	favors co-occurrence of D. acuminata and H. akashiwo in Torquay Canal, while
425	species interactions may play a larger role in Dinophysis bloom dynamics. Further
426	analysis of biotic and abiotic factors regulating growth and proliferation of D.
427	acuminata in this and other mid-Atlantic estuaries will be essential to development of
428	management strategies for prevention and mitigation of toxic blooms of this species.

430	Burkholder, J., Glibert, P., Skelton, H. (2008). Mixotrophy, a major mode of nutrition
431	for harmful algal species in eutrophic waters. Harmful Algae, 8, 77-93
432	
433	Clough, J., Strom, S. (2005) Effects of Heterosigma akashiwo (Raphidophyceae) on
434	protist grazers: laboratory experiments with ciliates and heterotrophic
435	dinoflagellates. Aquatic Microbial Ecology, 39:121-134
436	
437	Connell L. B., Jacobs M. A., Strickland R. M. (1997). Anatomy of a bloom:
438	Heterosigma akashiwo in Puget Sound, Puget Sound Research 98:830-834
439	
440	Coyne, K., Handy, S., Demir, E., Whereat, E., Hutchins, D., Portune, K., Doblin, M.,
441	Cary, S. (2005). Improved quantitative real-time PCR assays for enumeration
442	of harmful algal species in field samples using an exogenous DNA reference
443	standard. Limnology and Oceanography: Methods, 3:381-391
444	
445	Coyne, K. J., Hutchins, D.A., Hare, C.E., Cary, S.C. (2001). Assessing temporal and
446	spatial variability in Pfiesteria piscicida distributions using molecular probing
447	techniques. Aquatic Microbial Ecology, 24:275-285
448	
449	Díaz, P. A., Fernández-Pena, C., Pérez-Santos, I., Baldrich, Á., Díaz, M. & Rodríguez,
450	F. 2020. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red

451	cryptophyte plastids from Rhodomonas/Storeatula clade. Harmful Algae,
452	99:101907.
453	
454	Demir-Hilton, E., Hutchins, D., Czymmek, K., Coyne, K. (2012). Description of
455	Viridilobus marinus (Gen. Et Sp. Nov.), a new raphidophyte from Delaware
456	Inland Bays. Journal of Phycology, 48:1220-1231
457	
458	Frost, B.W. (1972). Effects of size and concentration of food particles on the feeding
459	behavior of the marine planktonic copepod Calanus pacificus. Limnology and
460	<i>Oceanography</i> ,17, 6:805-815
461	
462	Goa, H., Tong, M., An, X., Smith, J. (2019) Prey lysate enhances growth and toxin
463	production in an isolate of Dinophysis acuminata. Toxins, 11, 57:1-16
464	
465	Guiry, M. (2003) Teleaulax D.R.A.Hill, 1991. Retrieved March 31, 2021, from
466	https://www.algaebase.org/search/genus/detail/?tc=accept&genus_id=46329
467	
468	Guillard, R. R. L., Sieracki, M. S. (2005) Counting cells in cultures with the light
469	microscope. In: Anderson, R. A. (Ed.), Algal Culturing Techniques. Elsevier
470	Publishers, Academic Press, Amsterdam, pp. 239-252.
471	
472	Handy, S., Coyne, K., Portune K., Demir, E., Doblin, M., Hare, C., Cary, S., Hutchins,

473	D. (2005) Evaluating vertical migration behavior of harmful raphidophytes in
474	the Delaware Inland Bays utilizing quantitative real-time PCR. Aquatic
475	Microbial Ecology, 40, 2:121–132
476	
477	Hansen P J, Bjørnsen P K, Hansen B W. (1997) Zooplankton grazing and growth:
478	Scaling within the 2-2,000-µm body size range. Limnology and Oceanography,
479	42(4): 687-704
480	
481	Hansen PJ, Nielsen LT, Johnson MD, Berge T, Flynn KJ. (2013) Acquired
482	phototrophy in Mesodinium and Dinophysis - a review of cellular organization,
483	prey selectivity, nutrient uptake and bioenergetics. Harmful Algae 28: 126-139
484	
485	Hansen, P., Ojamae, K., Berge, T., Trampe, E., Nielsen, L., Lips, I., Kuhl, M. (2016).
486	Photoregulation in a kleptochloroplastidic dinoflagellate, Dinophysis acuta.
487	Frontiers in Microbiology: 7:785:1-11
488	
489	Hattenrath-Lehman, T., Marcoval, M., Mittlesdorf H., Goleski, J., Wang, Z., Haynes,
490	B., Morton, S., Gobler, C. (2015). Nitrogenous nutrients promote the growth
491	and toxicity of Dinophysis acuminata during estuarine bloom events. PloS One,
492	10, 4: e0124148
493	

494	Hattenrath-Lehmann, T., Marcoval, M., Berry, D., Fire, S., Wang, Z., Morton, S.,
495	Gobler, C. (2013). The emergence of <i>Dinophysis acuminata</i> blooms and DSP
496	toxins in shellfish in New York waters. Harmful Algae, 26:33-44
497	
498	Heinbokel, J.F. (1978). Studies on the functional role of tintinnids in the Sothern
499	California Bight. I. Grazing and growth rates in laboratory cultures. Marine
500	Biology, 47: 177-189
501	
502	Jeong, H., Latz, M. (1994). Growth and grazing rates of the heterotrophic
503	dinoflagellates Protoperidinum spp. on red tide dinoflagellates. Marine
504	Ecology Progress Series, 106:173-185
505	
506	Johnson M D, Beaudoin D J, Laza-Martinez A, Dyhrman ST, Fensin E, Lin S,
507	Merculief A, Nagai S, Pompeu, M, Setälä O, Stoecker D K (2016) The genetic
508	diversity of Mesodinium and associated cryptophytes. Frontiers in
509	Microbiology 7
510	
511	Kamiyama T, Suzuki T. 2009. Production of dinophysistoxin-1 and pectenotoxin-2 by
512	a culture of Dinophysis acuminata (Dinophyceae). Harmful Algae, 8(2): 312-
513	317
514	

515	Kim, M., Drumm, K., Daugbjerg, N., Hansen, P. (2017). Dynamics of sequestered
516	cryptophyte nuclei in Mesodinium rubrum during starvation and refeeding.
517	Frontiers in Microbiology, 8, 423
518	
519	Kim, M., Kim, S., Yih, W., Park, M. (2012). The marine dinoflagellate genus
520	Dinophysis can retain plastids of multiple algal origins at the same time.
521	Harmful Algae, 13:105-111
522	
523	Kim, S., Kang, Y. G., Kim, H. S., Yih, W., Coats, D. W. & amp; Park, M. G. 2008.
524	Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis
525	acuminata as functions of light intensity and prey concentration. Aquatic
526	Microbial Ecology, 51:301-310.
527	
528	Lindahl, O., Lundve, B., Johansen, M. (2007). Toxicity of Dinophysis spp. in relation
529	to population density and environmental conditions on the Swedish west coast.
530	Harmful Algae, 6: 218-231
531	
532	Ma, S., Whereat, E., Luther, G., (2006). Shift of algal community structure in dead
533	end lagoons of the Delaware Inland Bays during seasonal anoxia. Aquatic
534	Microbial Ecology, 44:279-290
535	
536	MacKenzie, L., Beuzenberg, V., Holland, P., McNabb, P., Selwood, A., (2004). Solid

537	phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates
538	the biotoxin contamination of filter feeding bivalves. Toxicon, 44:901-918
539	
540	Mafra Jr LL, Nagai S, Uchida H, Tavaresa CPS, Escobara BP, Suzuki T (2016)
541	Harmful effects of Dinophysis to the ciliate Mesodinium rubrum: Implications
542	for prey capture. Harmful Algae 59: 82-90
543	
544	Martin-Cereceda, M., Williams, R., Novarino, G. (2008). Easy visualization of the
545	protist Oxyrrhis marina grazing on a live fluorescently labelled heterotrophic
546	nanoflagellate. Current Microbiology, 57:45-50
547	
548	Martinez, R., Isari, S., & Calbet, A. (2014). Use of live, fluorescently-labeled algae for
549	measuring microzooplankton grazing in natural communities. Journal of
550	Experimental Marine Biology and Ecology, 457:59-70
551	
552	Nielsen, L., Krock, B., Hansen, P. (2012). Effects of light and food availability on
553	production, growth, and photosynthetic rate of Dinophysis acuminata. Marine
554	Ecology Progress Series, 471:37-50
555	
556	Nishitani, G., Nagai, S., Hayakawa, S., Kosaka Y., Sakurada, K. 2012. Multiple
557	plastids collected by the dinoflagellate <i>Dinophysis mitra</i> through kleptoplasty.
558	Applied and Environmental Microbiology, 78:813-821

560	Ojamäe K, Hansen PJ, Lips I (2016) Mass entrapment and lysis of Mesodinium
561	rubrum cells in mucus threads observed in cultures with Dinophysis. Harmful
562	<i>Algae</i> 55: 77-84
563	
564	Papagiannakis, E., Stokkum, I. H. M., Fey, H., Buchel, C., Grondelle, R. (2005).
565	Spectroscopic characterization of the excitation energy transfer in fucoxanthin-
566	chlorophyll protein in diatoms. Photosynthesis Research, 86 (1-2): 241-250
567	
568	Papiol, G., Beuzenberg, V., Selwood, A., MacKenzie, L., Packer, M. (2016). The use
569	of a mucus trap by Dinophysis acuta for the capture of Mesodinium rubrum
570	prey under culture conditions. Harmful Algae, 58:1-7
571	
572	Pappas, A. (2021) Winter bloom dynamics and molecular analysis of
573	benthic sediments for the toxic dinoflagellate, Dinophysis acuminata, at
574	Torquay Canal, Rehoboth Bay, Delaware, USA. Thesis submitted to Delaware
575	State University
576	
577	Park, M., Kim, S., Kim, H., Myung, G., Kang, Y., & Yih, W. (2006). First successful
578	culture of the marine dinoflagellate Dinophysis acuminata. Aquatic Microbial
579	<i>Ecology</i> , 45:101-106
580	

581	Portune, K., Coyne, K., Hutchins, D., Handy, S., Cary, S. (2009). Quantitative real-
582	time PCR for detecting germination on Heterosigma akashiwo and Chattonella
583	subsalsa cysts from Delaware's Inland Bays, USA, Aquatic Microbial
584	Ecology, 55:229-239
585	
586	Rial, P., Garrido, J., Jaen, D., Rodriguez, F. (2012). Pigment composition in three
587	Dinophysis species (Dinophyceae) and the associated cultures of Mesodinium
588	rubrum and Teleaulax amphioxeia. Journal of Plankton Research, 35, 2: 433–
589	437.
590	
591	Riisgaard, K. & amp; Hansen, P. 2009. Role of food uptake for photosynthesis, growth
592	and survival of the mixotrophic dinoflagellate Dinophysis acuminata. Marine
593	Ecology Progress Series, 381:51-62.
594	
595	Sanders, R.W., 1991. Mixotrophic protists in marine and freshwater ecosystems.
596	Journal of Eukaryotic Microbiology, 31:76-81.
597	
598	Smith M, Hansen PJ (2007) Interaction between M. rubrum and its prey: importance
599	of irradiance, prey concentration, and pH. Marine Ecology Progress Series
600	338: 61-70
601	
602	Smith J., Tong, M., Kulis, D., Anderson, D. (2018). Effect of ciliate strain, size, and

603	nutritional content on the growth and toxicity of mixotrophic Dinophysis
604	acuminata. Harmful algae, 78:95-105
605	
606	Stoecker, D., Johnson, M., Vargas, C., Not, F. (2009). Acquired phototrophy in
607	aquatic protists. Aquatic Microbial Ecology, 57, 279-310
608	
609	Tong, M., Zhou, Q., Kulis, D., Jiang, T., Qi, Y., Anderson, D. (2010). Culture
610	techniques and growth characteristics of Dinophysis acuminata and its prey.
611	Chinese Journal of Oceanology and Limnology, 28, 6:1230-1239
612	
613	Tong M., Smith, J., Kulis, D., Anderson, D. (2015). Role of dissolved nitrate and
614	phosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis
615	acuminata. Aquatic Microbial Ecology, 75: 169-185
616	
617	University of Delaware Citizen Monitoring Program. (n.d.). 2019 Water quality
618	reports and summaries. Retrieved March 31, 2021, from https://www.citizen-
619	monitoring.udel.edu/2019reports/
620	
621	Whereat, E. (2015). Dinophysis acuminata in Delaware's inland bays and coastal
622	waters 2001-2015. From: https://www.inlandbays.org/wp-
623	content/uploads/Dinophysis-in-DE-2001-2015-Whereat-STAC-DEC-2015.pdf
624	

625	Wolny, J., Egerton, T., Handy, S., Stutts, W., Smith, J., Whereat, E., Bachvaroff, T.,
626	Henrichs, D., Campbell, L., Deeds, J. (2020). Characterization of Dinophysis
627	spp. (Dinophyceae, Dinphysiales) from the Mid-Atlantic region of the United
628	States. Journal of phycology, 66:1-21
629	
630	Yasumoto T., Murata, M., Oshima, Y., Sano, M., Matsumoto, G.K., Clardy, J. (1985).
631	Diarrhetic shellfish toxins. Tetrahedron, 41:1019-1025
632	
633	Yutaka, O., Yamasaki, M., Suzuki, T., Ichimi, K. (2001). Pigment profile and
634	violaxanthin cycle of Heterosigma akashiwo (Raphidophyceae). Journal of
635	Shellfish Research, 20: 1263-1268
636	
637	Zhang, Y., Fu, FX., Whereat, E., Coyne, K.J., Hutchins, D.A. (2006). Bottom-up
638	controls on a mixed-species HAB assemblage: a comparison of sympatric
639	Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates
640	from the Delaware Inland Bays, USA. Harmful Algae, 5: 310–320
641	

644	Figure 1. (A)	Cell abundances	of <i>D</i> .	acuminata ov	ver a p	period of	10 days,	when	offered
							, , , ,		

- only *Heterosigma akashiwo*, both *H. akashiwo* and *Mesodinium rubrum*, or only *M.*
- 646 *rubrum* as prey. Error bars represent standard error (n=3 for each treatment). (B) Cell
- 647 abundances of *Heterosigma akashiwo* and *Mesodinium rubrum* over a period of 10
- 648 days, when offered to *Dinophysis acuminata* as prey. Error bars represent standard
- 649 error (n=3 for each treatment).
- 650
- 651 Figure 2. Fluorescence intensity of chlorophyll *a* in *Dinophysis acuminata* offered
- only Heterosigma akashiwo, both Heterosigma akashiwo and Mesodinium rubrum,
- and only *Mesodinium rubrum* as prey (excitation wavelength = 633 nm, emission
- 654 wavelength range = 649-698 nm). Error bars represent standard error (n=30 for each
- treatment) and asterisk indicates a significant difference between fluorescence
- 656 intensity of chlorophyll a (p < 0.0001).
- 657

Figure 3. Ratio of intensity of emission of chlorophyll *a* when excited using 488 nm

to emission intensity when excited using 561 nm wavelengths, for individual cells of

- 660 Dinophysis acuminata when offered only Heterosigma akashiwo, Heterosigma
- 661 *akashiwo* and *Mesodinium rubrum*, or only *Mesodinium rubrum* as prey. Error bars
- 662 represent standard error (n=30 for each treatment).

- 663 Figure 4. Correlation between *Heterosigma akashiwo* and *Dinophysis acuminata* cell
- abundances in Torquay Canal between 2011 and 2017 for samples in which both
- species were present at >10⁴ cells L^{-1} . Pearson's correlation analysis revealed that
- 666 *Heterosigma akashiwo* and *Dinophysis acuminata* cell abundance were highly
- 667 significantly correlated (p < 0.001).
- 668
- 669